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TWO-DIMENSIONAL POTENTIAL FLOW PAST
AN ORDINAKY THICK WING PROFILE*

By F. Keune

i
X

- 4

H

. , /
SUMMARY S P

This report deals with the development of a method
which gives a lucid and convenient solution of the flow
conditions in the vicinity of a common, thick airfoil sec—
tion wherein the thickness of the profile is taken into
account. The methcd consists in making the airfoil the
streamline in a parallel flow by disposing on its mean
line certain source and vortex distributions the fields
! of which are superposed on the parallel flow. These dis—
tribut%ons of singularities are secured for the general-
ized Karman-Trefftz profile by means of conformal trans—
formation from the flow about a circle. ZFive different
distribution functions are afforded for the density of
superposition, which combine in a specified manner to the
necessary distributions of singularity and represent a
generalized Karman~Trefftz profile in parallel flow. For
these profiles the speed for each of the five distribu—

) tions is then computed independently of the angle of at—
! tack.
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This substitution of a profile theoretically secured
by singularities is then extended to incliude more general
airfoll ghapes, since a simple method permits a close ap—
proximation of any profile by a generalized Xarman—Trefftez
profile with known substitution of singularities. This
approximation then affords the solution of the velocity
field in the neighborhood of the general thick airfoil by
& convenient method, For each of the five functions of the
superposition density a speed diagram is plotted; the
{ curves of constant speed parallel to the coordinate axes
‘ are combined.to.an orthogonal system, The readily dis—
cernible effects of the individual singularity distribu—
tions on the speed at any point of the plane of the section

} * 1

Die ebene Potentialstrgmung um allgemeine dicke Tragflﬁg~

- elprofile." Jahrbuch 1938 der deutschen Luftfahrtforschung,
pp. I 3 - I 26, )
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are in a simple manner correlated to the speeds. For com—
parison the speeds can be computed by the same method con-
formally to Birnbaum's approximation. It is found that
the cmission of the profile thickness is permissivle only
at great distances, that is, approximately of the order of
magnitude of a wing chord.

A method is also given which affords a check on the
agreement of the profile contour with tae closed stream-—
line defined by the singularity distributicns. & further
method enables the prediction of the profile contour for
any selected singularity distribution.

After completion of ‘this article, Z.f.a.M.M,, vol., 18,
1938, p. 107, carried a report by ¥. Weinig, entitled:
"The Flow Conditions in the Field of Thin, Slightly Cam-
bered Airfoil Sections," which gives the velocity distri-
butions for thin profiles in accord with the writer's
calculations (figs. 26, 27, and 28;. Weinig also consid-
ered the effects of complicated camber shapes. But the
essential of the present article is the determination of
the effect of profile thickness, which was not considered
in Weinig's report; although it is very pronounced, accord-
ing to present study. In general, it should be stronger
than the effects of the mean-—-line forms exceeding Eirnbaum's
formulas.

INTRODUCTION

A solution of the two—dimensional flow about thin
airfoil sections is afforded from either Birnbaum's method
(reference 1) or Glauert's (reference 2) by the superpo—
sition of vortices on the mean line of the profile. But
this theory fails to allow for the profile thickness.
While the two—dimensional flow about thick profiles can
be solved by means of conformal <sransforzmation, it in-
volves considerable paper work, except for particular
families, such as the Joukowski, Karman-Trefftz, and gen—
eralized Xarman-Trefftz airfoils {(reference 3). In addi-
tion to that, these arguments do not lend thexselves %o
the solution of the flow in vieinity of a2 wing of finite
span, because conformal transformation is aprlicable only
to two-dimensional flow and the application of the data
derived from it to¢ three—dimensional-processes is limited
to particularly favorable cases. On the other hand, these
interference fields in three—~dimensional flows are fre—
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quently important, especially for biplane caleculations.*
Kence,. if the. th;ckness effect of a profile in all such
calculations is to be acconnted for, the conformal trans— , -
formation must be abandoned in favor of the singularity
method as for the thin proflle.

The method of singularities consists in visualizing
within the body in a stream another stream that forms the
analytical continuation of the stream outside the body.

The total flow has a closed streamline which coincides

with the body contour., For the flow within the analytical
continuation yields singularities, namely, sources and
vortices, The total flow can be interpreted as the field
of these singularities. Thus the plane flow about a cyl-—-
inder is represented by a doublet superposition on a par-
allel flow (that is, the flow from a source to a sink lo-
cated infinitely close to one another). The cylinder
radius is defined by the ratio of doublet intensity to
speed at infinity. If the cylinder has 1ift, a vortex

flow past the c¢ylinder axis must be added, In general, it
requires several, usually continuously distributed singu-—
larities rather than singularities in a single point as in
this instance., On surfaces of the type of airfoil sections
the singularities are usuvally located along a2 line, that
is, on the mean line. The displacement of the streamlines
from the mean line corresponding to the finite thickness —
is effected by a source distribution; whereas a vortex dis-
tribution produces the lift—inducing deflection. of flow,
Such representatlon of flow past a Drofile is always pos—
sible if the flow in the outer space can be analytically
continued on the inside (theory of analytical functions)

g0 that the singular points of the function are disposed

on a line wholly within the profile. This is necessary
because it is conceivable that isolated singular points
might yet be present; although they are likely tc¢ occur
only along the chord by very radical thickness changes,
such as are not apt to be encountered on the conventional
airfoil shapes.

The principal task of the present repert 1is to evolve
a simple method by means of which the intensity and the
position of the singularities can be so defined that the
closed streamline resulting from the superpositiom of the
singularity flow on the parglleY flow is coincident with
the given profile contour,
*The solution of this problem forms the subject of a spe-—
cial report,
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If a symmetrical profile is chosen, the singularities
will, for reasonse of symmetry, be located on the mean line.
Then the singularities could be determined in a similar
manner as known from the calculation of the flow past air-
ship hulls, by assuming the source distributions partly
constant as proposed by Von Karman (reference 4) and so
defining the unknown intensities that the body contour de-
comes stream surface., But then the determination of the
starting point of the superposition invelves unusual dif-
ficulties. If 1t is wrongly chosen, the density of super—
position at the start fluctuates between positive and
negative values, which was the very reason for the uwlti-
mate change to surface superposition on airship hulls,
especiaglly In the case of transverse flow so as to avoid
these difficulties (reference 5). For the two-dimensional
problem in gquestion a different line of attack ig pursued
from the very beginning. Since the flow past airfolls of
a certaln family is readily afforded from the flow past
a circle by means of conformal transformation, the singu-
larity substitute is forthwith computable for such pro-—
files after inclusion of the flow within the conformal
circle., Certalin laws and typilcal distributiocn funetions
are acquired here which are faithfully transformed into
general profile forms,

If the singularity distributions are given, the next
problem consists in computing the flows of the separately
found singularity distributlons which are then easily com—
bined intn the desired flow of a prescribed profile.

With the computed singularity distributions new pro-
file forms with desired form characteristics can also be

constructed without having tn resort to conformal trans-
formation.

FOTATION

o =w+ 1T point in the plane of the circle
£ = £ + in consecutive point in the plane of the section

iy starting point in the plane of the section

2]
i
»
+

ordinate in the plane of the section measured
from the mean line

<t
u

°
{

o

Vg ordinate of the mean line
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yg ordinate of the streamline

i S ordinate of the mean Idne .at .point. x = + %
Y= ordinate of the mean line at point x = - %'
D, thickness of profile at paint x = + %'

D, thickness of profile at point x = - %'

Dpax maximum thickness of profile

t profile chord

a distance EZ:, criterion in plane of circle

al half distance of branching points in plane of section
d measure for profile thickness

tan B measure for profile camber

B measure for reversed curvature of prefile

§=Kkm trailing edge angle of profile in radians

(o), 9(2) complex pntential function in plane of circle
and section, respectively

¥ (o), U(z) stream function in plane of circle and section,
respectively

Ve e—ia! air flow in plane of circle

Veo e~ 1o air flow 1in plane of section

Ve=¥wo cos o component of flow in x direction-
Vy=Voa sin o component of flow in y direction

Va normal component of velocity at the slit in plane ¢
and 2z, respectively

vy tangential component of veloeclty at the slit in
plane { &and =z, respectively

n speed along x axis in plane of section

v speed along ¥y axie in plane of section
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w absolute amount of speed in plane of section
.} angle of speed toward positive x axis of piane of
section
£ ; . :
qv(g), ay, . strengta of source per unit distance
Yo (§) \ ! strength of vortex per unit distance
fy 3 base funetion of the singularity distributions
\\a / with the ordinal number v

Pl
Qv<~3%; 3%/ ratio of integral of flow function of source
a
E
distridution £, i;ﬁ ;  to undisturbed
\ /
air flow at point 31; —
a' a!

Wy 3%, T > ratio of the Integral c¢f the flow function

(X
\a'" a' e N

of the vortex distribution fy =
a’ /

I. THEORY
1. Solution of Singularities

a) Jaukowski Profile

The Joukowski profile Kp' (fig. 1) in the { ©plane
in the reflectlon of a circle KX; in the o plane,
transformed by the conformal function

a?
{ =0+ — (1)
g

frome plane o in plane {. This circle_ K, 1is given
by three gquantities, namely, distance ¢1A2 = 2a, which
defines the profile chord, distance 00, = o tan B,
which defines the profile camber and distance 5:5; = d,
which defines the profile thickness. From these quanti-
ties the radius of circle X, follows at

R = -2 _ 4 g (2)

iIts midpoint ©O; has the coordinates

o = — 4 cos B + 1(a tan B + d sin B) (3)
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Circle KX,, with center 0O;, and-radius - 2 and a
- , ) cos B
radius vector amounting to . - A
r=~a 1+ tan B sin P + L tan® B sin2'¢\> ’ (4)
.\ - ' 2 . VN
(fig. 1) is transformed by the cqﬁformal,functiqn (1) in
a double curve X,;', considered herein as the mean line
of the profile. Its conrdinates are:
4 4 / N~ 0
1 2 2 \ !
— = — & COS 1l + = tan® B sin 1 ]
2a a'l ® \ 2 cp/ :
| ‘ (5)
1
2= stan B sin® ¢ - \wqp(‘lcﬂi¢ﬁ‘ E
2a a' )
AT
2
ETON
D otan B {1 — = (6)
alt \ atz /

The slope of the mean line at any point l% " is accord-
ingly a

dr ,
—— = tan V ® — 2 tan B cos o (7)
dt

The inside of this circle K, then forms the second posi-
tion of the { plane, so that the mean line X,' 1s at
the same time the glit in the original position for tran—

sition into the second. Points A,'.and Ap' are the
branch points of the transformation. The distance of these
points from the zero point ig TTEKLT = OTA Y = 2a = a',

The flAaw past profile Xy' is obtained by transform—
ing with function (1) the flow past circle KX ; from plane
o 1into plane { . This flow in plane O, wherein circle ¥j
is in a parallel flow at angle o' .and speed Vo at in-—-
finity, is given by the complex flow potential

- T R 1%l 7 . .. .0 ~.0
P(0) = Vi j (0—=0p)e™ % 4 o |+ 1 —— '1n 2722 (8)
L ° O =0Cp - 2w R

If, to insure smooth flow—off at the trailing edge, a stag—

nation point is to be located in point A,;, then it must
be that
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T'= 47m Vo R sin (a' + B) - . (9)

Now when the flow conditions within the profile are
considered as continuation of the looked-for flow in the
outer space, it 1s hardly to be expected that the same
speeds prevail on the upper and lower edge of the assumed-
ly double slit K,', because these edges form the transi-—
tion to the second position. This is readily apparent
upon exzmination of the speeds at circle K,; of plane o
the upper are A B,;A; of which becomes the upper edge
and the lower arc AL ;BzA; becomes the lower border of the
slit, The flow past circle K; affords the speed at
cirele K,; whereas conformal function (1) yields the
speed at the slit which can be divided in its normal and
tangential components. To get rid of the conformal trans—
formation, the plane of the profile, pvplane {, must be
interpreted as plane closed in itself, wherein the slit
loses its significance and becomes the wmean line., Then,
however, the difference of the normal speeds v on the
upper and lower border of the slit must be interpreted
as source superposition (see fig. 2) and that of vy as
vortex superposition. The source strength g per unit
length at a point Q of the mean line is accordingly
given by

al&) =6, dp = (vy )y (10)

ob >3 u 4

and the vortex strength ¥ oper unit length by
Y(L,) = (v - ¢ (11)
;1 tob )E'l (vtu)gx

With these data the singularity distrivutions for a
Joukowski profile can be computed.

For future purposes the flow velocity 7V, in plane
o (fig, 1) is divided in its components narallel to the
axes of the coordinates

~N
]
i

P (12)

v

!
@ Vo, cos a

v

T Vog. sin 0..'

and each of the flows created by the components is analyzed
separately., The complex f low potential (8) divided con-
formally to (12) affords the speeds ¥, in the o plane

and the speeds g = u -~ iv through the known relation
zg = Vg %%. The speed in the { plane produced by the

w flow reads
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a0, ‘4ad(g), do

at ao at -
2. 3 2 o2
¢ Ria c 2 0o% 8 R r Cap 8 O a
m— el 220 S 3-%; —5}+ 2i—8inf|l+ —= _+--%; —
a a“is a o a o a L a O =&
v, (13)
g .2
a o

and that due to the 1 flow 1s:
a o & (o), do )

at d o at

o R®Rrg Oy 2% g,2 a® R T Op a ‘002 a®

;+—;-—+2—— ——2-+3—-a-~ —;—z—cosﬁ 14 — —+ = —3
a“la a O a” g a c o~ 4
~iV . 2 = (14)
o a
a o]

on the assumption that the distance o061 of the center
0z of the circle from the gzero point is short compared
to a and hence small compared with Joi = r. This is

always the case when restricted to the conventional profilas
where d/a is always << 1 and tan < 1l; hence, es—
pecially thick strut sections are discounted,

Entering the values (2), (3), and (4) in equations
(13) and (14), where o = r e*®? indicates the coordi—
nates of circle K,, gives the velocities on the mean
line, the real and imaginary part representing the com—
ponents u and (-v) alsng the coordinate axes. From
these, with consideration to equation (7), the tangential
and normal components follow at

vy = u{l — 2 tan® B cos® ¢) = 2 v tan B cos ¢—] (15)
15
¥n = 2 u tan B cos ¢ + v(1 — 2 tan® B cos® ¢))r

(see fig. 3).

@ -~

After expansion of the speeds (equations (13) anad
(14)) in powers of d4/a and tan B — the terms of higher
than the second order are considered negligidble — there
is obtained with equation (15) and consideration of (10)
and (11) a close approximation for the singularity dis-—
tributions of the Joukowskl profile.
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For the flow along the w axis the source distribu—
tion reads™*

-2V, ——l—— xg[cos ¢(1 - cos ¢) + sin;@]

sin @

a ()

2

a )
+ z-gz[cos p(l — cos @) + sin® ¢ — 3 sin®p cos ®]+...-(18)
J

and for the vertex distribution

’ d i
Y{p) = 2 Ve 12 tan B sin ¢@| - = tan 8| ‘—si:og—g — 4 sin o
[
i} ~

+ 6 sin ® cos ! + ..f- (17)
A

and for the source distribution along the T axis

“ecos (1 — cos @)
q(cp) =|—6 VTg'-tanﬁi hi i

+ si
L sin ¢ "

—~ 2 sin @ cos w} + ... (1r8)

and the vortex distribution

r1 - s - ]
N(p) = 2 Vod 22808 @ 5 &, 1 -cos 9 CP”
1 sin ¢ &L sin o
s - -
+ 3 Q_! 1 -cos ® sin ¢ + 2 singp coso l
a*L sin g |
~ & tan L= G058 @ _ 4 sin @ + 6 sin ¢ cos @1
8 L sin ¢ - J

-

-1 sin © + 2 sin ¢ cos ¢i+...} (19)
2 J J

]
ll
Q
o
w
-8

Between the angles @ of plane O and the running
coordinates of plane ¢ the simple relation

*The heavy separation lines in the formulas indicate the
places where the egquations should be broken off when terns
of the second degree are discounted.
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cos ¢ = £ - (20)
. _al

s . = _ - - -

exists according to equation (5); besides, the flow at
infinity remains unchanged in quantity and direction in
the transformation, so that V, = Vg, Ve = V_, and

a' = a. y :

A study of the computed singularity distributions
discloses a consistent recurrence of the individual ana-—
lytical expressions for the superposition density from
which the entire distribution can be obtained. They are
the four analytical expressions

-~

‘ fl(i/a‘)

——l—~[cos p(l — cos ) + sin® o]
sin ¢

it

Pa(yar) = booeee ., JIZETET > (21)

sin o o + E/a'
VNG
fs(g/a')=s1n¢=+/l_(\§T>a
L 4 E /______/_________2_
fa(t/a') = sin o cos <p=.;_'_ ,\//l—/kf’?> )

~

which, for prectical reasocns, are treated individually.
The expression for the source distribution fi(ﬁ/a') is
given separately; although it is composed of f; and f3z:

f.(t/at) = 2£5 (Efa') — £.(t/a") (22)

because of the necessary secondary condition

+al

f—; jp fi/at)at =

}
o
—~
4V
V3]
S~
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which must accompany all source distributions. Through it
the contour stipulated by the source distribution

N
al /
4 /
fl{ —Lﬁ\ and f 4 £ A of which the source distributions
\a'/ \a'/

(16) and (18) are composed, each satisfies this condition
(23) by itself.

f becomes a closed curve at infinity. PFunctions

N N
In the distributions £ j% t and faffj% there
a a

can be recognized the well-known Birnbaum formulas (refer—
ence 1) for the vortex distributions which transform a

flat or curved plate into a streamline, It affords, ac—
cording to (19),the vortex distribution for the plate which
is always occurring

[N 1=t £ e
Ve )T R Ty ST TR TG (24)

and, according to (17), the vortex distribution which indi-
cates the effect of the curvature and produces a rotation
of the:rzero 1lift direction (a, = —B):

¥ -5_\‘=4v tan B/1 — (¢/a')® = 4 ¥ tansf/-g—
3 9.'/) x Ea - X 3‘\3'
. (25)

These known Birnbaum distributions are supplemented
further by the effects due t0 profile thickness, that 1is,
the source distribution (equatijon (16)):

/e g/i‘i“ﬁ?'/ EN_ Ly d (D
ALY A N 7T T A it ()
(26)

and the vortex distribution (equation (19))

1 .:__—__-'- Land s
Yas <£%>= -4 v % //i___ééi_ £ . a v, & 3f3 (j;\— £ g \q
a

Yaw 1+ t/at at Y a \a '/ 2\;—'/_J
(27)

The quadratic terms are discounted for the present. They
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merely afford in closest proximity of the profile contour
a portion to the fow and are needed only when checking the

wowCoincidence  of--the--closed -streamline resulting from the

singularities with the profile contour (cf. appendix).
Otherwise they are important only for error appraisal

A1l singularity distributions extend from ¢ = +a'
to ¢ = -a', that is, from the trailing edge of the pro-—
file, the rear branch point A,;' to the forward dbranch
point A,', located slightly behind the nose. The die-—

N
tributions fl{/jb ! and fg(’ih\> have in the forward
a'/j - a'y
branching point E= ~-a' an infinity point, that is, they

N -2
approach infinity as <.1'+'£T) .
a

b) The Kerman-Trefftz Profile

Whereas the Joukowski profiles terminate in an infi-
nitely thin trailing edgze, the Karman-Trefftz profiles
form a finite angle & on the trPlllng edge and so ap—
proach the commonly employed profiles much closgr. Now
the guestion arises as to the changes in the established ,

distributions when a Kdrmdn-Trefftz profile is to be stream—

line in a parallel flow. The conformal function

L= ak =-E_:_§-}k (28)
t+ ak o + a
transforms the circle K, (fig. 4) irn a2 cresecent K;!
with angle 6, when
27 — §
k=2_" 0 =2 - & (29)
i
and
_6 -z
K= - (30)
For 8 = 0, circle K, becomes the infinitely thin mean
line of the Joukowski profile, since (28) affords the
conformal function (1),. The Karmin—Trefftz profile will

bé, on the whole, thicker by the thickness of the crescent
than the Joukowsxl profile, In view, therefore, of the
singularity distributions a greater displacement flow may
be antlcipated that is, a new source dlstribution where—

as the vortex distributions change very little. “Qif

analysis will proceed tqerefore from & symmetrical

Karman-Tref;tz profile,
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On transformation of the. o plane in the ¢ plane
the upper or the lower rim of "the.crescent X,' or any
one curve in its interior becomes a slit in the § plane.
The straight line A, 'A,!' 1gs sdlected (fig. 4), that is,
the median line KXz' of the crescent as slit, on the cir-
cunference of which the tangential and normal components
of the speed must be computed as on the Joukowski profile,
To this end the speeds in the o© plane on the reflection
of this slit must be known, which follows from (28) at

I \ } N s
g = a [l §-‘s,1n ¢| 1+ 82 8 sinW¥ ;elw (31)
4‘ 8 E/J

AV

they are two circular ares X, symmetrical to the w
axis, meeting in points A, and 4; and having a radius
vector of |o| T a, where 1 1is the circular angle in
the o plane. After transformation the area bounded by
the circular arcs K; forms the second position of the

{ plane.

For the speeds at the slit in the { plane egquations
(8) and (9) give the flow along the w axis at:

e ]
i@, 4d(e), 4o V" R® 1 1 -7z (32)
- —_— = 2 - : 3
at do at k2 o (o - co)zj . ¢
1 - 2
alte
and the flow along the 71 axis at:
2
g
ad dd(o)r 4o v, " R= 1 -1 -7z
T = —_ = = 1 ;1[l+-— ——————— - 2R | 2 (33)
at do at k2L (0 - 0,)%? c-—coJ1 2
_.alz
if tan B = O = -d, R 1is given by (2)and o by (31),
According to (10? the source distribution for the flow

along the ¢ axis follows from equation (32) at:

"; :E N\
——— = e — VvV = — 2
Ay \ Llcosy (1 — cos ¥) + sin? U]
i : 4z
+ 3 5 isin wICOSW‘+ 2 —Efcosu!(l —~ cos V)
- ' a

+ sinzq/—.z sin®y cos V] + % K Sisin w;cos v o+ ;..}' (34)
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‘ and, according to equation (11), the vortex distribution
- of the same flow direction °

7(5‘:‘): 0 (34a)

For the flow along the 1n axis, equation (33) gives the
source distribution

3 2=
i

TR

| o q(;g—)=0 (35)

and the vortex distribution

v(g\‘ gy 212V r(1-co.-=.xlf)+2—[1--<=°5‘1"'Sin”’]l

o |

w 72\
at®
42
+ 3 —;-D — cosV¥ — 2 sin®V+ 2 sin®Vcas V]
a
+ 238 'fsinwi 'rl—cos\iJ-—g'-Sina\U:!
a 2 | L 2
5% . )
+ 55 sin®V (1 — 4 cos V) + ..., (36)

The transformation leaves the air flow at infinity un—-
changed. The secured singularity distributions also
contain the circular angle ¥ which is not as simply
related to the abscissa § of { plane as the angle
® 1in the Joukowski transformation. In this instance
the relation is obtained by entering the coordinates of
circle K, (equation (31)) in the conformal function

(28); then
i El;/k
L T 152__5_'{
\0 2 (tan™ ") ————E— L 2 16 = J (37)
1 4+ 2= -
B.'
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For Joukowski profiles &§ = 0 and k = 2, then

Lt
p = 2 (tan™?1) al, £ 5 cos P (38)
e
1 + —
a '

For practical reasons the coordinate —— in the plane of

al
the profile is now considered as a fixed given quantity,
and ¥ , related to £ and 8 through equation (37), is
al
represented in the form
Y @ + ¢ (39)

The circular angle ¢ for Joukowski profiles is given
by equation (38); angle ¢ is largely dependent on angle
§, specifically €= 0 for & = 0. With (39), equations
(37) and (38) give

o ———

1 —-t/at "7 - 5/a'] i
1+ t/at E.Ll + ¢ /atd - j

€ K-m;: ~2 (tan™ ') 2 ¢ v
1 +[1 —E/a'][l-—i/a']”4

1+ ¢/a 1+ E/a?

(40)

K74
7N
/

and €(—~t/a') = —¢(+ft/a'). The correction angle ¢ ( jﬁ)
a

N

is small for the usual &8 and in close approximation may

be considered linear in & and K, respectively, as

exenplified in figure 5, where ———————  is plotted

against ET independently of K .
a,

Expression (36) then affords with (38) and (39) the
analytical expressions for the superposition density
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- £ sin V¥ o ~ -
f R ) -
1 _1_(&_') e {fos V(1 cos \I/? + sin® ¥ j
1l -~ ;TE
2
1 — 25
= f1/ _E.‘._> + ¢ <_€'_ 4 _g___._____a'__'._z.
\.a" a a' 1+ g/a'
) S (41)
f, --E'—): —EEE—W_.._ (1 - cos y) = f2<'€—\ +€<g_>£t§_§_/_a'
at 1 j,e a'/ ! 1+€/a|
atz
3
T (&N, _sin ¥ g, (EN Z L EN Z B
) e (- (05
tT o

differing only by an additive term from the original ex—
pression (21). They also have zero or infinity places at

the branch point A,' just as the expression. fy, (£/a'),
except that the limiting values at these places g/a' = 4 1!

| ___1_1-__'1
are now reached with the power* (1 — £/a') =2 L2 2,

However, even this change in the singularity functions in-—-

cluded in the correction term is negligibly small for all
usual angles (86 S 36°).

These known expressions are supplemented by a new e
one for the singularity distributions of the crescent: '

o , ' 1 - 53
£y <;ET>= —ﬁ—ig—-{— sin ‘-IJ’ cos V¥ = f5Q_ET\' < E’ A -—-—:—_:::;: (42)

' a'/ /
R A v/f _ &2
ala . i ata

.
v LA . e N

*If ¢ = —(a' — A), equation (40) becomes
( A 1/ 1 oA K/4 .
t - A)] = i 41 — =2 +.o..
e [—(a' = 8)] +2L2a,} ; ;Lga,] 3+
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s
where fs(-iTv = cos P = éT (422)
\a ', a
/ N\,
Funetion f5\~57/ gives the source distribution of the
crescent
— /8N =/ &
Tl == j= = 85 == (43)
5\\3,') s\al/t

For the singularity distributions of the Karman-—
Trefftz profiles, the factor i% =1+ K+ , . . 1is sup-—

plementary to those of the Joukowski profile; it affords,
besides the vortex distribution caused by the thickness of
the crescent,

ver () e () )

merely distributions which are small from the second de-—
gree at least. Summed up, there is obtained, besides the
Joukowskl profile singularity distributions, additional
@istributions for the symmetrical Kérmdn—Trefftz profiles:
namely, the source distribution Es(g/a') and the vortex

" distributien KYQ(E/a'), which, taken by themselves, rep-—
resent a crescent. For curved Kirman-Trefftz profiles the
afore-mentioned terms are supplemented by others which are
dependent upon edge angle and camber. Fut an exact calcu—
lation discloses all these terms to be small,at least from
the second degree.

N

¢) Profiles with Reversed Curvature (5 profiles)

The mean line of both the Joukowski and the Karmén—
Trefftz profiles is a circular arc. But the form of the
mean line of a general proflle usuelly differs from a cir-
cular arec for reasons of lesser center of pressure travel
by angle-of-attack changes. This 1is achieved by an S-—
shaped mean line, The deformation of the circular—arclike
mean line requires an additional vortex dlstrlbutlon on_

substitution of the profiles by 51ngular1t1es.

According to Betz and Keune (refercnce 3) a circle
K, (fig. 4) is transformed inte a profile with finite
angle at the trailing edge and with reversed curvature by

means/gf conformal function

——————————————————




e
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. (45)

To secure the additive vortex distribution a circle K,
is merely transformed into an infinitely thin S-—shaped
mean line (fig. 6) (that is, put & = 0, k = 2), because
the different singularity distrihptions are known to be
additive in first approxlmation. urthermore, the eri-—
terion g for the size of the reversed curvature is
presumed to be small, so that terms which are guadratic
in p are negligibly snmall.

Development of the conformal function for small u
and k = 2 affords

. 2 2
_.g_ = ._1_ o+ &_ 4+ 4 a o g. 1 - a” \ (46)
a' 2a g 4 a f

It splits in the known Joukowski transformatlon and an
additional conformal function.

The reflection of circle X, around O (fig. 6),
o =a el®P, is the slit, the mean line the { plane with
the coordinates

—— = cos ¢ — B osin® P; LN sin® ¢ cos ¢
a'l 2 ! 2
Hence Py
LI U S AR (47)
a'l 2 at \ a'2/

d ‘ t®
tan p = .--—.11 = - E’. (1 -2 ._‘.___\ (48)
¢ 2 at?/
the direction of the tangents of the mean line to the £
axls. Then the tangential and normal components of the

velocities at the slit follow at
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v, = u - (1 — 3 cos® o) v

WIF

(49)

<
1

% (1 - 3 cos?® @) u + v (

and equations (8) and (9) finally afford with (10) and
(11) the vortex distributions for the S—shaped mean line:

y(a_’>=.— -Vx-+%vy‘i3psincpcos cpW
[
and L (50)
v £ 2 2. v, - My |1 - cos @
\a'/ LY 4 X sin g

In these equations (50) the fact that the conformal fune~
tions (45) and (46), respectively, changes the air—flow
direction at infinity has been borne in mind, giving

u

Voo cos a'! =V Ve coOS /a . Ve + By
\" 2 4 ¥

(51)

g TN .
i ' = = i [ - E’. ~ Vv —_ E'.
Vo sin a V. Ve Sin \a 4) v 2 Vx

this change being interpreted as a rotation of the co-
ordinate axes in the { plane.

Then the introduction of the analytical expressions
(21) and the limitation to terms of the first rank af-—
fords, besides the known distribution for the plate.

‘Y ./E 2 V £ .’/ 2\\
P\at/ y T \at/

the vortex distribution for the reversed curvature

N\

\

G

1
i
N

B
B Ve sin 9 cos ¢ — 3 Vy ——————

(52)

1}
]
[WN)
k
<!
]
r Hh
KN
/I.\
+
o |-
Hy
()
//-'\
O v
-1
.
L J
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the first part of which was given by Birnbaum (reference
—==l-); while the second part is due .te the rotation of the
axes in flow direction.

The singularity distributions thus secured for a
profile with finite edge angle and reversed curvature in
first approximation, then, merely need to be combined in
o, certain manner to afford the field of flow of this pro-—
file.

If the vortex distribution of a selected mean line
is to de established, it can be v1suallzed approx1matelJ
by the sum of circular arc (equation (6 3) and reverse

curvature (equation (47)). The coordinates of this ap-—
Proximation can be written in the form
N\ 2N
LI /tan B — i _f.__ )( - -"E:“" (53)
a' 2 a' y a'® /

Then the directions of the tangents with the ¢ axis
are given by

tan v = an . _ 2 £ tan B — = /1 - 3 jL— (53a)
d¢ al \ at'® /

and with it the tangent in point A,'(f = +a') by
tan v, = — 2 tan B + p and the tangent in point
Ayt =(f=-a') by tan Vy; = 2 tan B + p.

The procedure in solving the profile constants
tan B and K can therefore be the same as Birnbaum's
(reference 1), who derived them from the tangents at
points A,' and A;'., But, since the tangents are hard
to establish accurately at these points, it is more prac-—
tical to define the curve of the third degree of the mean
line from the ordinates. With mn, denoting the ordinate

1 t
at E =+ %? and TN, the ordinate at £ = — %; (fig.

14), equation (53) gives

ta;l B = 2/33 + .T_‘._l\
8\\a' at'/

(54)
3\ a' al')/
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This defines the profile con-
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vith respect to all singularity

stants for the case where the meanelements along the arc length S

line is &2 curve of the third de-—
gree. Whether it is represented
accurately enough by this curve
can be checked by the degree of
accuracy with which the ordinate
value for £ = 0O satisfies the
condition no/a’ = tan B.

2, Plow in Plane of Section
a) Substitution of Profile
by Singularities

The flow past a profile in
parallel flow can be achieved by
a certain continuous distribution
of sources and vortices on the
mean line of this profile. The
flow produced by these singulari-
ties must be superposed on the
parallel flow so that the closed
streamline formed by these two
flows agrees with the profile
contour, The form of these sin-
gularity distributions was se—
cured in the preceding chapter
for profiles of certain families.
If thegse distributions are to be
used for the substitution of
other profiles, the extent of the
coincidence of the closed stream—
line with the contour must be

checked. And this introduces the
streanm functions of the distrivu-—-
tions.

The complex flow potential
of a source element qf(f) ds 1in
a point £ 1is given by

@m=%%m@—qa

and for a vortex element Y (f) ds
by

ym

D, (z) = In{z—2¢)ds

{ is the locus of the
Integration

where
element (fig. 7).

of the mean line affords for the
profile in parallel flow the
stream function

@) =Verze 5 [a(@In s — ) ds+
S
+oo 7@ E—0ds (@)
S

with V, denoting the flow ve-—
locity and a the angle of
attack respecting the positive
x axis. The integral equation
for the stream function

P(z) =y Vo c0s x— z Vo sin & %fq(&) arc tg Z:Z

+5= [ 7 @] e T ds, (559
S

ds

is now simplified so that the
integrals can be numerically
evaluated independently of the
form of the mean line. Next,
we introduce (fig. 8)

Y = Jg *t 7

whereby yg;, the ordinate of

the mean line, can, according
to (53) bve written in form

BofetZ)-2)
Likewise
I

a’?
and the arc element ds itself
is given according to (53a) by

M—JEV —— ng

the small quadratic terms being
discounted.

Herewith the integrals be~
come -~

IY(E)IH}'(Z—E)'-I'-!/ n)=ds~j'y(e>lnv'(x—e)-+y $

—§) (z+§)

tgﬁfy(&) Gfltd o
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+a
i;— » (8)

’

L e—t=ta

_(——)er—"

] |«

+

d":)w

fq(E)arctg —

ds=~~ fﬂ(&)arctg = dg’

——tgﬂfq(f)‘——*’%‘ﬂdf
+“ u—a-w+a
@ f“‘s sy

In addition to the underscored
integrals independent of the
form of the mean line,
cunmulative integrals multiplied
by consistently small values
tan f and W and,
the singularity distributions,
they are therefore small, at
least of the second degree.

We theretore dispose, similarly
to Birnbaum (reference 1) ana
Glauert (reference 2),

line, and so obtain

+a _
Yzl =yVepcosa—=zx Voosina+2lnfq (&) arc tgzi

.—a'
oM

a
1 —
37 ) rOm ET F R ae,
—a’
for the stream function.

According to the fore—

going, the singularities ex-—-
tend from A, to. Ap',
Putting ¥ = const affords

an integral equation indicat-
ing the field of all stream—
lines in the plane of the
section, one of which is the
closed_streamling, that nust
agree with the lection con—
.tour. "Since all streamlines
are defined merely up to one
congtant it is decided that
this streamline shall obtain
the value V¥ = O, Then the
streamline of the parallel
flow which goes in the for-
ward stagnation point of the

(ﬂ;)But

(%b)ticn.

we obtain
together with

Hence;
they have no further significance.

the singwo—
larities on the chord of the mean

e W,
Edf+

1023 23

section must, of course,
carry the same identification,
gince this stagnation
point is not generally known,
some other method must be
applied, The flow is there~—
fore divided again into its
components along the axes of
the coordinates and the con-—
stants are so defined that,
for the flow in the x direc-—
the rear stagnation
A,' and for the flow in the
y direction, the profile polnt
on the y axis (x= 0, F=¥%,)
lies on the streamline ¥ =0,
Then stream function (57)
gives

y\

L_—+ Q‘( a')+%6(—)i‘§; -az)
+2mﬁpnti;”y—wunm]
__{W,,,%H—W(lﬂ
+6[W,(7, 7)—W.(I;O)] + &=

for the flow along tLy x axis*

and
_—_%—-(1 -{-2%4— x) [W.—:r; %)——W,(O;
_|_2i[Wa(_‘?,_, %)——W,(O;l,l)]_gw

for the flow along the y axis,
m”with abbreviation

2l

. (69)

a'Vy

dé&

p a ) arc tg E

—$

a.=0 (% L) w6

( o) arcte =5

for the source—sink integrals**
and

*The — denotes the correction,
according to formula (42),

**Pormula (60) is evolved from
the relation

+(tan—1)—i—=n—(tan—1)§;L
x—t ¥

whereby, because of (23)

FEICONTER
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to I 2Y

1 £ e EVL P w2, X u= ’+

?aTJqf’ (F)IRV (7— a’) + o7 ds=W, (a” a') (61) by ...... (63)
o ~a¥f, L% b!I’,

for the vortex integrals, and

gx and g denoting the quad— 1Ip this case also the effect of

ratic small terms. For the each singularity distribution
profile itself, we get {4y = O is given separately, in order
Wy =0 to preserve the lucid aspect of
W, 62) the effect of the individunal
vt profile constants.
If the four constants %’ 5, Partial integration of (58)

tan B, and @ are correctly and (59) gives the four integrals

defined the contour of gener-—

alized Karman-Trefftz profile 20, _ “ff( )
(reference 3) should agree ap- dy/a’ i’ (I—fy+y
proximately with the stream- 1 \ £
line from equations (58) and =*—;{—7 P4‘U]—Jﬁbv«7ﬂ}
(59), if necessary with allow-—
ance for the quadratic terms. 20, __ 1 Jw ( ) dE
The agreement can be checked 0 z/a’ Y (x—fﬁ+—y ~
numerically by means of the — i_PJﬂbi”
appended graphe which give the an a
ta (64)
values of the flow function oW, 1 £ ] 2
for the source distributions aw¢:=;}rﬁtihx—iﬁ+ya
Qv (equation (60)) and for —u - £
vortex distributions W, =z Pl["V(?)]
(equation (61)) plotted against and
the ordinate 3% for various Oﬂa ffw (1—5F+y ¢
x

abscissas - =%{%P1[fv(§)]—1’s[fv(%”}

b) Field of Velocity in the which divide into the two inte—

grals

Vicinity of a Profile

e ot

nl

As a consequence of the

resolution of the singularity and .. (85
distributions which transform Ede
a profile to a streamline in a IGP’F7H Jvﬂk~hz—fﬂ 7

parallel flow, the velocity
field around this section is The singularity distributions

egstablished without difficulty. St N
The components of the speed are fv(\;T,/ can be written in the
iven by
€ form
¥ 0¥ e 3
=u; =0 E\ _L/a—§ £ &
oy oz F(;,—)-— —a—,q_—g[c1+czal+csa/z]

Therefore the resolution of the
and, according to (62), one general integral
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ERE)

=

1\w4+ n i changes sign, the root being
=(“T w-—?é = 5.,. . (66) positive for x < 0O and nega-
@) et gyt tive for x > O.
is sufficient, if n 1is a whole
positive digit (n = 0, 1, 2, 3). Denoting the integral Jp
for the individual values of n

After the substitution
"

dw

- X = W,

—%
a — z—w] [z 4 w]?
o
—(a’+-x)

Development of the integrand of
this integral for n =3 in
powers of w gives the integral
in the form

‘ (@)~ J=by Ly 4 by Ly+ by Ly L, . .
|
| where
)
' o dw

@ 45}/0.’” (a:—|—w)"’
| ZGS:JC wdw —zn
‘ V@i — (z+ )
| —(a'4x*
~ and .

widw a'?
va= w+wv_4%3"+ﬁ%

while the solution of integral
leads to

dw

L, (bawtbs _bg b _g
L .§W+§V¢’ Gtwp o ar
. —(a’'+x)
: where
/1 2 P
e s
1 2 )
Z
| = 7
T =)
an
— 2 vy =29

‘ l———'—‘/[l a/’+a'|] +4a/|??

; are dimensionless values, It

should be noted that

—

Yo — (ot a*

(W)

with Jqo, J,, J2, and Jj

wvhile keeping fy(f/a') in mind,
equation (65) gives

Py [f, (ai)] = Jo+2Jy;

Pi[n(E)] =%

()]
[A§H=o+h, Pff g =gt [
LA BN
vhich, .entered in (64), finally

yields the dimensionless speed

-factors of the vortex distribu=-

{68)

. (70)

tions, as follows:

Along the x axis

O T

by/lll gr Ql+ a/ ] \ _,

oW, __ ¥ =z 12 y)g]
by/a/— a; [1+2a, Ql+( a/z+a/z 2 (72)
W, __ ¥ [g2 @ —_ )

= Lps+(So—a

S
—(%Q,—391)+a—7’,5(3792-—91)]

and along the y axis

2 (i-ZJar B |
el 5—(1—%)"1+—§'2‘(21'”'_“‘) v
Db:;:: =—[-2—— TN r:+ 5 'Q’+ 2

_%@Fg+7mp74ﬁm+ﬁmﬂ
The dimensionless speed values
of the gsource distribution are
obtained from those of the vor-
tex distribution with (22) and
(64). The value for the com—
ponent along the x axis is
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20, __ W, W, 0Q __ 1_[2+ Lz, fe—airy
dy/a’ daz/a’ daja’’ dyldd @ 2d " (z+a)+y _
and that along the y axis —-QMGQ.LEZ%Fﬁ}
2Q, PW, | OW, _ Ney e Y5 ()
dz/a’ ~ “dy/a dyla (74) 00, —-l[llln—«————(z_a)z_'_yz
y vale ~w |2 G Tty

Now there is lacking only
the speeds of the source-sink
distribution of the crescent

;;<\§T ). (equation (42), the

flow function of which occupies
a special position among the
integrals. 1Its exact evalua—
tion regquires a numerical proc-—
ess, since Tf;(f/a') 1is given
as such (fig. 9)*. But, dis-
counting the region in proxim-
ity of the branch points A !
and A,', the analytically
given form f (£/a') (equa-
tion (42a)), which is wrong only
in the vicinity previously men-

z
+—,al‘0tnx2 a"’—l—z_/"’.

Herewith the dimensionless
speed factors of all the singu-—
larity distributions are secuced
which, in first approximation,
give the velocity field in the
vicinity of a profile, The sec~
ond part gives the velocity fields
of every single singularity dis-
tribution in diagrams which enable
easy reading of the values for
each point, The ind.viduzal values
obtained by differentiation of
equations (58) and (59, awna al_..-
ance for (63), read as follows:

(% %) | 22

tioned, can be used (shown by yo T Lose 1+“"‘_3wa
dashes in fig. 9). Then 006, )
) —+2mﬁ—~“ -
005 :__ J" LEdE T 0 yla’ dyla
vyla’ (x—fV+J ‘7 . 7
, . (a LACTEATEE m(a,;?)) -
and t+a - (78) T4 "Fﬁ?__+6_‘3wd' +aym
90 11 ] (c 7
r=t == —— = £d & dW, f
Solution of the two inte-— OW( 7 -
grals el Z’§ﬂ+_o& LT
+-af 3 2a’17 a o yla’ 0 yla’ !
§dE (_x:ﬁ)_-l-_y+ aretg 55
!f(;:rgqug' l(z%-wP—Fy a1ty szeﬁlln ¥y axis direction . -
—a l)(:z,.;? 4 0, (,,—/,)
and ——— L =smao 1—([+2_+x} v ald
. (00} a a_;c_
S RN e
'wf( 4yt U {z4 a4yt YA ( v X
—u Ta g
xz——y 2a' Yy ~+~2-2 7 ¢/ Y8
+ a7 arctg e a 0:, D‘Zi,

g€lves for the source distridbu-
tion of the crescent the func—
tions

E T
\a / can, in
good approximation, be considered
linear in 6§ = K w and are
therefore plotted for 8 = 1.0.

*The values

00, (z , 17,) 0Q; (i, -1‘1)
‘—Coba[g ‘an__‘f_l() a a

¢ 0= 2 R
a (l,
OW«é;%) OW(* L)
+2mﬂ_:JLiH_K( o @
4

{78)
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Here also the terms with g4 and gy are guadratic
small (equations (82) and (83)) in the appendix.

Because of the cited omissions the formulas secured
here are not applicadble at the proflle edge or. its imme—~
diate v1clnity, which, moreover, would exceed the pur—
poses of the present work.

3. Appendix. The Quadratic Members of the Development

Since the singularity distributions were obtailned
by means of a development according to profile constants,
the linear terms of the development will ordinarily be
insufficient in closest proximity of the profile contour.
This fact is of importance only when attemoting to check
the accuracy of a predetermined profile by the given
distributions. But for predicting the velocity field in
the neighborhood of a profile the linear terms should
prove sufficient, whence in this case the gquadratic terms
give in error estimation,

Quoting all the guadratic terms secured would cnolu~
plicate the representation and entail hardly worth while
paper work in the error estimation and the check on the
profile contour, Hence the various nonessential terms
are disregarded. These are the correction terms in equa—
tion (41), which secure new analytical expressions for the
superposition density. They are themselves small as quad—
ratic terms and produce minor, negligivle changes in the
distributions of the Joukowski profile due to the edge
angle. The correction term in eguation (42) alone remains,
in order that this distribution portray the true conditions
of the crescent of the Karmidn-Trefftz profile, The addi-
tional integrals in (56a) and (56b) are discounted, as the
new integral forms have only a slight effect on the results.
A1l these terms can be disregarded for the very reason
that the general profiles, for which ultimately the singu-—
larity distributions are used, mostly deviate frow Kérmidn-

Trefftz profiles from which the distributions have been
obtained.

There remain then the quadratic terms of the singu—
larity distributions of (16) to (19) and (34) to (36).
0f these only the distributions multiplied by Vy =
Vo cos a are employed; the guadratic values multiplied
by V:,,r = Ve sin o are likewise ignored, as the angle
of attack a is consistently presumed to be small,
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Furthermore, while the wing chord is largely responsible
for the flow in y—axis direction, that is, the vortex
distribution of the flat plate (equation (24)) the thick-—
ness and camber of the profile are of secondary importance.
In consegquence, only the singularity distributions are
written that appear for the flow in x axis direction, as
they alone contribute a perceptible share to the resuits.
They are the source distributions

-
P ~ / 4 N\ M
q_l(e) -i—-.‘,z—g ngllg—-#-l‘i , T - \|
al a\, a at J
() e N a?

-/
7t
fa &’
previonsly but will gdin significonce for the design of
new profile forms because of its property of shifting the
area of maximum thickness of a profile more toward profile

SE N
center (\II, 5), Digtributions ql(e); "t,‘—' :
\a'/

— N ’
q5(2)<£57/ afford a correction to the contour of the

of which the source distridbution > ¢id not appear

and

Joukowski profilc and the crescent, recspectively. Because
of the thickness effect on the camber the vortex distribu—
tions

()7 €N _ (£

() e et ()
(2) 7/ N\ . /o a N\ I N

3 r\\;—'/z + 4 .‘,XKE ; + KI/‘ tan B fs\gET/ > (80)
(2)7 £ _ d SR

'Y4 \;T/ = - 12 VX ;— tan B f4\a—' /' )

are additive to the corrections. Witheut tvhese guadratic
small terms (80) the profile on the side facing the curva-—
ture redius of the mean line would be thicker tharn on the
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other (fig., 21): that is, the prefile would apparently
have a smaller camber.
In this manner the ca¥rection term for the stream—

line of the profile by V, flow is obtained:

4 N - ’ N\ o
+ 202 & 4k tan B, W, i;l,-ws(l;o)J
N - L atl atl/

— 6% tan g W, (L )= w, (1;0) i+ (81)
a L a' al

and inserted in eguation (58), while ¢ (equation (59))

y
is being disregarded.

Differentiation of this equation affords the quad-—
ratic small portions to the speeds in egquations (77) and
(78): .

EI A [x TN
o8 3, e, K\a Vi (5TaT ) a2 2 el gTiaT )
d y/a! a\\ a d y/a! a2 d y/at
4 \ /x 2
x ¥ I J
3 Q 3 W —--;_~>
.3 ‘s 5 Q T a‘/ ! tan B \a' al
4 d y/a! a d y/a?
4 e M /x .5:\
_I__._B__ . oW S
a 3 W \\at'at/ a 4\al aly
+ 2<? -+ K tan B — 6 — tan B \
a / d v/at a d y/a
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x y x 7
3 Q,( =L WS
d g a d N 1 T a2 4 a”a')
____.x.—.z-—'z—-}- K_“I & a/._e-.._
d x/a? a \ a / d x/a? a® d x/a?
- /x ¥ x.7F
+ 2 K § - —- — tan B
3 x/at a d x/at
/ 5 / N\
\ 3 W, .%,.;..yT> sw (=,
4
+ 22 = +x tan B 22 ~63 tan-8 \atlal/ (83)
N d x/a: d x/a?

the individual terms of which are known from the linear

distributions (equations (72) to (74)). Newly added are

the speeds of the source distribution f4(:57\ which,
a’ /

however, can be derived from those of the known vortex

distribution for the S—shaped mean line, according to

equation (64). Because

Ve - N\ 4 P
2 Q, [E; L0 2wyl E TN
‘\aia|/=_— \ataI/ (84)
d y/a!t d x/al
and e 7\ /x y O
A Cur A Cured
= > = (85)
d x/a! d y/at
o gy 0 gy
The terms —-—~—%~ and ————%— are disregarded conformally
d y/at 3 x/a!

to the foregolng arguments.

II. APPLICATION
1, Generalities
The solution of the singularity distributions for a

generalized Kdrmdn—-Trefftz profile (reference 3) is de—
scrited in part I of this report. The outstanding fact
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i1s that the vortex and source distributions necessary for
the~substitution of a profile can- be combined from only

five different distributions £y ! f— indicating the

absclssa of one singularity. To make the calculation as
much as possible independent of the angle of attack o

the parallel flow er—ia is divided into its component

V. = Vo cos o along the x axls and its component V., =

Vo sin oo along the y axis. The first result is the vor-—
tex distributions as previously given by Birnbaum (fig.

s N
10): the vortex distributions 2 Vy fai\f% )\ of the flat
plate, the vortex distributions 4 V, tan B £5 { :
’ ’ . AN / ; .
the curved plate, the vortex distribution -3 Vyuf, \ET/
a

of S—profile.* These distributions are supplemented by
two new source dlgtributlons (fig. 11) wkich appear only

for t he flowfvvx. The one source distribution

v a ) N
=2 Vg S fy Ki# , leads to a closed streamline similar

jk < of
a!

to the symmetrical Joukowski profile, where g is the

parameter for the profile thickness. For the Karmén-
Trefftz profiles with finite angle & at the trailing

—— ./ 3 N
edge the source distribution \—Vx 5 fS\\Jﬁ ; ‘is additive;
which, considered by itself, is the source distrlbution_

of a. svmmetrlcal cregggnt with edge angle ) (fig. 11).
Besides these singularity distributions generallzed

Karmdn—Trefftz profiles have stilll other distributiéns
composed of these, five basic functions, which must be com-— R
bined with the afore—-mentioned superpositions and with V"
the parallel flow according to a certain law 1f the Karmén—’

Irefftz profile is to be streamline in parallel flow. -

*Constants tan B, M, Q¢ and & are disqusse& farther on.
a.

!’ ‘\
**e" ..g_.

\g! /
affords a satisfactory representation of the aspect of

/e
s\a7 )

is explained in I, 1 b; for the rest, the graph

A
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Then, in order to establish the effect of any one
of the singularity distributions on the flow fermation
or the speeds at a polnt of the plane of the section, the
effect of all its singularity elements at this point must
be summated, that is, integrated along the line on which
they are located., The mean line of the profile 1s chosen
as the depository of all singularities. Diuring the devel-

opment of the integral it was found that the ordinate s
al

of the mean line (fig. 8) could be disregarded, and the

singularities thenselves assumed on the x axis, with a

much simpler evaluatlion as a result. With —% as the

a
ordinate of the meanr line, the point of the profile plane
Is given by :

LR A (86)

with f% denoting the distance of this point from the x
axis (fig. 12). TFor starting points at greater distance
from the profile, put E% = j%, that is, let fhe mean
line and the coordinateaaxisacoincide; but the two values
must be carefully differentiated in profile proximity.

When in the following a method for computing the
plane potential flow about general thick wing profiles 1is
evolved, it 1s practical to utilize fully the data secured
for the generalized KarmAn—Trefftz profile, since the flow
condition for each of these profiles 1g known. As the
caleculation is to deal with the flow about a general pro-'
file- in the meighborhood of the profile but not on its
surface, the method can be restricted to an approximasion,
that is, the given general profile is closely substituted
by a generalized Karman-Trefftz profile, which merely
stipulates knowing the profile constants for this similar
Karmén-Trefftz profile, which then is a good approximation
for nearly all practical profile forms. The substituting
singularities of this proflle are herewith known, and 1t
will not be necessary as a rule to check on the given
profile the extent to which 1t is represented by the
singularities.

The reason for checking the profile contour (II, 3)

/
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is simply in order to show how closely the contour of
~general profiles agrees with the closed streamline of the
approximately resolved flow. T )

But the singularity distributions afford, in addition,
st11ll other new profile forms with certain, predetermined
profile characteristies. They may even vary substantially
from those of the Karman-Trefftz profiles if provision is
made that the singularity distributions characteristic
for certain proflle forms are combined in a manner other
than that prescribed for the Karman-Trefftz profile, The
profile contour is computed from the singularity distridbu—
tions analogous to the method employed by Fulirmann (ref-—
erence 6) to airship hulls. By the determination of the
velocity field of these profiles the pressure distribu—
tion ecan be indicated also in good approximation.*

2. Determination of the Profile Constants

The generalized Kdrman—-Trefftz profile 1s completely
defined by four profile constants. 3But before the calcu—
lation can be made the mean line and the axis of the
Kérman-Trefftz profile must be plotted first in the given
general profile, which agrees with the mean line of the
general profile only for symmetrical prefiles. The mean
line of the section is closely approximated by the line
connecting the centers of all the circles which touch the
profile contour twice from the inside (fig. 13), the cur-—
vature circle (radius p) on the nose included. The axis
of the Kdrmdn—-Trefftz profile which at the same time is
the x axis of the plane of the section is given by two
points A,' and Ag' (fig. 13). Point A,', 1located
at the section tip, forms the vertex of the pointed trail-
ing edge; for sections rounded off aft** of the rear con-
tact point of the tangent to the section lower surface,

of the chord, with the section is chosen, Point A! is
N\

located at half curvature radius ( % ) from the nose on

the mean line.*** Distance A 'A ! is put equal to 2a!',

*Although. it affords the closed streamline for the flow in
x direction exact, the vortex distributions for the flow
in y direction can only be approximately determined.

**Strictly speaking, it should be constructed just like
point A,;' at the -nose.

***Herewith the position of point A,'! is accurately
enough defined; although the plotting of the curvature
circle 1s affllcted with a certain error.
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The geometric angle of attack a does not, in general,

agree with the angle of attack o which must be measured
from the x axis.. With ag denoting the angle between x
axis and profile chord (ag = 0) (fig. 13):

@ = ap + ag (87)

——— e et

vertical on the length A,!' A",

Quantities tan B and p giving the camber and the
reversed curvature are obtained from the ordinates of the
mean line and not from the tangents (as Birnbaum did)
which cannot be accurately plotted. For generalized
Karmdn-Trefftz profiles the mean line is, in good approxi-
mation,a curve of the third degree (equation (53)) through
points A,;'Az', with which the general profile must coin-—
cide in two additional points. Choosing the points at

X = -0.5 with the ordinate 12 and at % = 0.5 with
a
the ordinate z-;‘- (fig. 14) affords*
a
1. The index for the camber
'y Ta
tan B = g iz + *—\\ (88)

3\a' a',
2. The index for the reversed curvature

8, 3 N
8/ ¥a _ ¥, (89)

This secures the quantities which define the intensity
of the vortex distributions for the curved S—shaped mean
line. ) )

The two remaining profile constants of the general-
ized Kirman-—-Trefftz profile must be computed from the
thickness curve of the profille; whereas a Joukowskl pro-
file requires only a section constant d/a for the thick—
ness, the finite trailing edge angle & on the Kirman-
Trefftz profiles affects the thickness at évery point,
particularly, a profile of finite thickness, the crescent

*See also: equation (54) and the context.
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]
is 1eft over for - = O. Therefore. the thickness of a
- a ~

"Karman—Trefftz profile 1is defined by twe criterions, 8

and E.. the magntiude of which is not ascertainable from
a . ,
the plotted profile without specified assumptions. If §
' 0,0 -
were given the value of 4. (denoted with —:-2 by Betz—
a ' a

Keune) could -be deduced from the thickness at profile cen—
ter by the Betz—Keune method (reference 3, equation (2));
but it is found that & cannot be accurately enough de—
fined from the angle at the trailing edge, because the ef-

feet of the constant 2 on the profile thickness starts
too close to the trailing edge, as is readily seen from the
Kirmén—-Trefftz profiles.* Therefore, & and g had to

be secured in a different way. Since the thickness remains
approximately independent of the camber and the S curvature
see equation (2) of reference (3)) and since the symmefri-
cal Kirmdn-Trefftz profile acts, in good approximation, as
if the ordinates of the crescent with the edge angle §
and the ordinates of the Joukowskil profile with the eri-
“orie
terion Y were additive,** the profile constants can be

expressed by approximate formulas., If profile criterions
a D

D 2 .
denote ;%, as thickness at - = 0,5 and - as thick—
a

are employed agaln at 3% = +£0.5, it then is expedient to
bs

a
ness at 3% = —-0.5 (fig. 14).
a
Then 8 follows at

VI (R, (B N o — (90)

}
~ t
al al L al! 1

a 1<D2 Dl\ - PR Dg Dl\‘
a 3 }J

and 6, in radians, at

*Angle 6§ at the trailing edge is read off as much as 80
rercent too great.

**For the symmetric Joukowski profile and the crescent the
ordinates 'in each point are easily secured, but that for
the Karmén-Trefftz profile is very complicated




36 NACA Technical Memorandum No. 1023

D, D
/ 1 2 \
6:"§\3 ——— (91)

a' a’ /

Although these formulas are not exact, equation (90)
proved very satisfactory in a check on a large number of
Kdrmén-Trefftz profiles, and equation (91) agrees with the

correct values up to® 1°, Since equation (90) is inde-—
pendent of &8, an error in 8§ is of little consecuence
on the subsequent results. With these constants the aero-

dynamic characteristics of generalized Karman—Trefftz Pro—

files themselves are secured - These relatlons also hold,
aDproximat&ly. fqr general profiles with the same con="

stants. The theoretical 1ift is

5 . N
Cq N —7—— 271/1 + 5 + E\lsin/e + B -2 (92)
t/a z2n  a/ \ 4

ma'

4
where —?;— <} + L8 + E'\ is the theoretical 1lift gra-—

2w a /
dlent that is always greater than the true value, because
the friction is not taken into account, and a5 =

’ 1 N\
—QB -3 B y "1s the zero lift angle of this profile,
measured from the x axis. The moment coefficient, referred
to the)centro1d F  of the profile, is (see reference 3,
p. 341

o =\ 8/ sinofp 24 (93)
°ny = \ )

The profile has a fixed center of pressure, when p;= — B, *
3

3. Substitution of a Given Profile by Singularities

In a check on the extent to which the generalized
Karman—Trefftz profile obtained by the computed constants
agrees with the given general profile, the study can be
limited to the profile in parallel flow along the x axis,
The parallel flow along the y axis is essentially affected
by the vortex distribution of .the flat plate into which
the profile chord enters. Against this effect the dis-—

*See reference 3, equation (48), where, however, the
squared terms are taken -into account. T
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tributions due to profile thickness or to the mean line
are inferior, especially since V. always remains smaller
than V (Vy <:V ); hence the approximation of the profile

by one of the Kdrman—Trefftz type should always remain
accurately enough in this direction of flow.

For the flow along the x axis the streamline equa-—
tion (58) — if the closed streamline is given the value

—_—Ze. = 0* ~ affords
a'lVy
y d fx VN1, = x ¥y D
—_—— = e — QlK_T;_T\_._ =3 Q (__ ’I_)
a!l a a''a'y 2 5\a' a!

a

+2 tan E[W:.,(x-'-;g?/‘—w (13 o)[~-<,w2(a k2 \-w (10)J

+5;w4"_x._;3_\s-— W, (1;0) e (94)
L \al a!l / 4% X

/

x ¥ O ¥
Here @ ——;jl ;  and Wv('ji;jl are, according to
V\a''al ) a''a!

equations (60) and (61), the abbreviations of the inte—
grals of the flow function of the respective source—sink

and vortex distributions £ \§‘> ’ The subscrlpt v .
al

7 N -
\ N } is always in agreement with that of Qv and
a’ Jj

sz) These integrals have been evaluated for all neces-—

of

sary values 3% and -~ =and the results plotted in fig-
a alt_.
ures 15 to 19 against j% for fixed absclssas j% and
a a

tabulated in tadbles 1 to 5., Allowance for the sguared
term £y

*Provided this streamline in the rear stagnation point

of the profile Al'K-ECT = +1.0; L = o\ reaches the
a e

value —=— = 0. This is achieved with the aid of the

constants Wp (1;0), W, (1;0), anda W _ (1;0).
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a d /' x 7 \ az x ¥
= -2 <+ g —tm—— V= 6 —p
Ex a \ a >Q1Ka'a'/ a® A2 a’a‘)
g8 - ¥y d N ¥\
+ - K.GQ,S —*—:'a—’—"/l.*a-" tan B §-W2 ;T;;/} — wa(.L;O)

i w4(1;0)J (94a)

, -
x \

adds the 1integral Qéi\—T;j% ) of the source-—~sink dis-—
al a

tridbution f,(¢/a') the values of which are shown in fig—
ure 20 and table 6. The squared term is usually needed
in a check of the profile contour.

The streamline simulated by the singularities is de-—
fined by approximation on the assumption that the given
profile actually has become the streamline through the

conputed profile congtants tan B, w, g. and § (equa-—

tions (88) to (91)). 1In thies instance the right— and left-—
hand sides of equation (94) would have to agree. Then
the successive entry of the coordinates of individual
points of the profile contour in the right—hand side of
(94) with due allowance for (86) — the values of the in-—

x .7\ /X TN\ ;
tegrals Ql?(;T’;T and wv\\;T’;T/} being read from
figures 15 to 20, and the calculation proceeding in this
manner with (94) — ultimately affords a value, which shall

be expressed with —<l2%> « It affords already a very
a'/\y .
good approximation for the ordinate <-XT> of the
&' /Y
closed streamline {, = O.
Since all singularity dlstributions were directly

derived for the contour of a generalized Karmdn-Trefftz
profile, the form of the given profiles 1ls approximately

~|
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always complied with by the singularities. Hence, no
pecularities are anticipated at an¥ profile points,and
it is sufficient to compute the ordinates of the stream—
line in a few points.

The method is first checked on three XKdrman—Trefftz
profiles (fig. 21) constructed according to the Betz—
Keune method (reference 3) with the profile constants
gilven 1n figure 21.* The constants are computed accord—
ing to equations (88) to (91) and the values posted in
equation (94). The result is

First profile:

D \N|D D
[ _max _ 0.138 )| —= = 0.272; = = 0.130; Y2 %2 L 5.0
\ t N~— - a,' a' a" a!
a [v]
— = 0.089; 8§ = 9 tan B = 0; p = 0
a
Second prafile:
/D N D
-B2% - 0,120 }| 22 = 0.234; - = 0.112; 22 = L1 = 0,038
4 — / a al a a
a
=~ = 0.075; & = 8° tan B = 0,051; w = O
&
Third profile:
/Dmax 2 1
—ZZ = 0,195 —_— = 0,398; —-= = 0.,130; — = —— = 0,066
\ t —_—, al al! a a
d . 0.15; & = 8° tan B = 0,088; p = O
a

Comparison of these values with those iIn figure 21 shows

a slight error in edge angle, which, however, 1s scarcely
noticeable in the calculation since the effect of thick-
ness d/a 1is much more decisive for the profile contour.
Figure 21 indicates that the second approximation (squared
term g, accounted for) is a very good check, even for
great thickness, of the extent to which a given profile
agrees with the Kdrmdn-Trefftz profile.

As an example for general profiles, three NACA pro—
files are selected (reference 7) and first the profile
constants are computed (seé fig. 22):

*a 0.0z 0

= = 2222 and tan B = 00, in reference 3.
a a a




To explain the calculation method,

<2§7>¢ te

carried out for

foil section. The profile
27 = 0.158. Then (86)
4. = 0.153 -~ 0.032 = 0.121
a
Q,(~0.5; 0.121) = =1,11
Qg (=0.5; 0.121) = —-0.298
fQ,(-0.5; 0.121) = -0.195]
Wo(1.0;0) = 1.0; W5(1.0;0)

wherewith equation (94) gives:

The accord with the ordinate of the profile point
unsatisfactory.

€x

-0.018

With the g
\a'

becomes

v\

Jv ~
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NACA 2412: .
D D y
22 - 0.241; =1 = 0.125; Y2 - 0.0323; =1 - 0.0246
a! at
4. 0.072; & = 10° tan B = 0.038; w = 0,021
a Y
‘NACA 2712
P2 . 0.p40: 22 < g0.120; %2 - 0.0242; Y% = 0.384
a' ] a a'
a 0
Z = 0.068; & =11 tan B = 0.042; p = —0.038
NACA 4418:
D D 5
22 - 0.386; =% = 0.190; %2 = 0.0667; L = 0.0525
a! a8 \ al
d )
- = 0,109; &8 = 16 tan B = 0,08; pw = 0.038.
a

the calculation of

a point of the WACA 2412 air-

point selected is =~ = — 0.5;
end there is obtained
Wo(~0.5; 0.121) = -0.308
W3 (~0.5; 0,121) = —0.033
W,(-0.5; 0.121) = 0.167
= 0,25; W4 (1.0;0) = —0.166
/
— EL\\ = -0,131 + g_.
\a' /¥ x
is still

uadratic term (equation (94a))

0.149 and affords a sat-—
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isfactory agreement between profile point and streamline
of "the felatéed generalized KérmAn-Trefftz profile. The
same procedure is followed at the other points of the
section contour., The results, plotted in figures 21 and
22 manifest satisfactory agreement at all points.

4, The Velocity Fileld of a Given Profile

The singularity distributions on the mean line of a

profile induce at each point P<:j% 3% s (fig. 23), a
a' a

speed w = W elé, the slope of which toward the positiwve
x axis 3 and the absolute amount ]x' = w. The amount
and the angle follow from the components parallel to the

coordinate axes as follows:

2 N\ 8 ’ 1 A
> =‘J4{it\\ + <;i O 6°\ (95)
Ve v,/ Ve / Vo \ 2/
and
s = (tan™?) =~ = X (986)
u

The speed components 2 and %L are obtained by
[o+] o
differentiation of the equation of the flow function

Y/a' Vo with respect to 3% and j%. being composed of
a

the differential quotients of the flow function Wx/a' Voo

obtained for the flow along the x axis . and the flow func-—
tion Wv/a' Vo &along the y axis; it is:

~
s Ux o Vo
t v vty
%L = g¢os a 2 & 2 Z2tan a
. d y/a' p y/a'
- - 4 (97)
5 Yy s Yy
1 B 1
X = —cos a 2 vco+ 2 than e
Veo d xfat d x/a’
u S . - ~
The speeds 7 and 7 being thus known from from equa-—

[o=] [=~3
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tions (58) and (59), can be defined by the method given
in the tadbulation. Bach source and vortex distributisn

composed of fv<:£7> and tan B, B, 4 and §, contrib—
a

a
utes its share to the speeds (made dimensionless with V)
/ ¥y
at a point P 'ii;ji , Tfor the source distributions
\a'’at

a' a'/ along the x axis and

‘x . T
9 Q, Ka,,a,/,

d x/a’

along the y axis

Correspondingly the vortex distridbutions are

d wv(-"_;?— ; 3 W, EEA
\a' at/ \a' a'/
and
o y/at 3 x/at

Thus it affords, according to the tabulation, for example:

/ F N
d Yx_ 3 Q. =2
2!V _ g, 4 \e! a + e
d y/a a d y/at

The velocity field for each of the five singularity dis—
tribution is shown 1In figures 24 to 28, the lines of con-
stant speed irn x and y direction being connected in

a system, from which the speed portions of a selected
singularity distribution for each point can be read off.*
The ealculation of the correction terms is usually un-
necessary, since they merely afford an error estimation
and are given in (82) and (83) simply for the sake of
completeness. One exception is the quadratic term

—————— , which essentially affects the direction of the

*Beeause of the necessary additive term (equation (42)),

—_— ~
the gpeeds in the vortex distrfbution f5<-§7 YV (fig. 25),
were obtained by numeriecal integration. a’/
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speed. ~This 1s due to the fact that the speed ———--re—o
: ) ’ d x/at
to be multiplied by cos a- begins with terms already
3 g
small of the first order, Here _— igs of the same
- D x/a! 0 Y /at v,
order of magnitude as the linear terms of +tan « 5 / : .
x/a

As an example, take the velocity fileld of the
Gy¥ttingen 624 airfoil section (reference 8) (see fig., 29).
Computing the profile constants by equations (88) to (91)
affords, with

{a

X

& Dz . 0.319; D1 0,160
X a! a !

i

ixt

g Y2 N

\ 2 =2 0.102; -Z = 0.062
4 at a'

B SR

the values

8
2= 0.10; 8 = 12% &k = = = 0,067; tan B = 0.109; u = 0,107
a
hence for the zero 1lift angle: —a, g -~ % Ly @, = -4,65°,
Since the profile chord slopes at angle ag = 2.2° toward
the x axis, it is found (equation (87)) that the zero
1ift angle ag, = —4.79-2.29-6.9° 1is in complete agree—

ment with the eéxperimental value.

The speeds at a point of the plane of the section

x y
with coordinates —-— = -~0,5 and - = -0,3 are to be
a' al

computed. Figures 24 to 28 give

d Q | W
9% 1,1,__,32_ = 0.23 BELE T ~1.52
d y/ar d y/a! o y/a!
3 Wy > W,
______ "2 0,68 1 eeme——s, = 0,21
d y/a'. d y/a’?
d Q, b'§; d Wy
————— = 0,25 —————"—~ = 0,831 —————em— = 0.42
d x/a d x/a! . d x/a!
d Ws 0 W,
—_————— = 0,34 ———— = 0,15
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for which the tabulation accordingly shows the following:

- = cos @ [1.006 + —1.806 tan al
VOD
o &
-— = —cos @ [-0.0056 - 0.397 tan o] - ———X— cos a
Ve 0 x/al
and
o g
~—-X%_ =-0,018
d x/at
The only quadratic term to be considered in the calcula—
- ag
tion 1is ———-§~. For the mean line ghone, which up to now
d x/at

indicated the subetitution of the profile according to
Birnbaum, the same calculation methed yields

%L = cos o [0.871 + —1,52 tan a
(o]
v 0 gx
- = =cos a [—-0.062 -~ 0.58 tan a] - — — CcO0s
vco ) x/a'
and
_.a_._f.sx._ = 0
3 x/at

With o = 3.4° for the angle of attack which, according
to (92),gives the 1lif#% ¢, = 1.0, and the profile thick-

ness taken into consideration, it 1s found that

%L = 0.897; %L = 0.029 + 0.018 = 0,047

o] (o]

and for the mean line alone, according to Birnbaum's more
convenient method in thils instance

u v

- = 0.779; =~ = 0,097

Vo Vo -

¥y

al

point 3% = ~0,5, with added cholce of angle of attack
a

This calculation is continued for other ordinates at
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a = -4,656% e, = 0) and a = —-0.7%(c, = 0.5), The re-—
sults are shown plotted against' y/a' 1in figure 30;

whereas figures 31 and 32 shows other seciions for 3% =
: a

constant., In all these graphs Birnbaum's approximation
s indicated with dashes. The so0lid curves give the
values with profile thickness allowed for, including the

guadratic term _E_ﬁx_, In the dash—dot curves this
_ L d x/a!

term has been discounted. In figures 30 and 31 the ve-—
locities were not computed up to the profile contour
because the approximation is no longer applicable there,.
It 1s thus readily seen that the effect of profile thick-—
ness 1s in many cases quite pronounced. The discrepancies
are even more pronounced near the nose where the location
of the forward stagnation point by the Birnbaum approxi-
mation becomes very inaccurate,and infinite velocities
occur at the mean line on flowing past the leading edge.

5., Appendix: Structure of New Profile Forms

In the ensuing development of new profile forme the
computed source distributions of the Karman-Trefftz pro—
file are duly considered, since arbitrarily chosen source
distributions would merely vproduce profile formgsthe ulti—
mate shape of which it would be impossible to foresee.
The only essential thing will be to so modify the form
of a Karman-Trefftz profile that the nose is given a
fuller form, the location of the maximum profile thickness
i1s changed, or a different mean—line form is prescridved;
this means the application of the source distributions
leading to the Joukowski profile (fig. 33a) and to the
crescent (fig. 33c) with edge angle & and superposition

by the simplest possible additive distridbutions fi<'£?>
a

X.

with a flow function 3 3% '« Then the stream func-—
a -

a’ /
tion of a symmetrical profile for the flow in xaxis
direction is given by:

v y . a - F
-—-—&— = -—-—.+ —Ql<-§ .I__
a'Vx at a

1,7 b4 h x ¥\
+ 3 8 Q5<-x—|:——;> + — Q, (——-;-") (98)

Q, (
2\
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where 3L is a constant., The type of addid%ive distridu-
al
f

tion - ——> depends upon the desired profile shape.
For'a fuller nose, for example, a source and a sink of the
same intensity is applied near the nose, or a doublet.

As to the displacement of the point of maximum pro-
file thickness, on Joukowski profiles, it is about one-
fourth aft of the lesding edge; on Karmadn-Trefftz profiles
it moves with increasing edge angle § closer toward the
center, Suppose that a greater shift of maximum thick-—
ness toward profile center is desired. This displacement

is favored ﬁy the function £, (-%:> interpreted as source
a

superposition (fig. 10), which heretofore appeared solely
as quadratic small term and which by ¥tself has 'a crescent
(fig. 33b) with angle &§ = 0 as streamline. The maximunm

thickness occurs at , where the sources change to

X

a'
) /

fz<;§;>= £, &i-) the total source

sinks. Selecting

distrivution follows at

’ ~ - t 7 ) 3
q _.E‘_. o 9'. l‘._..._g. a_ Q]_ + 2 _£..>+ .]l 5 _g_ +..,_.h—;.~§.. - _é....
a'/) ad 1l +t/al a' 2 a' ‘a' a' at®
/
where approximately K\for —- <\£\ ) (.E:\
- a' \ a't
(fig. 9). Putting q,(—j-\= 0, the point of maximum. pro—
a’/
. x
file thickness —% is:
a
h d /a! 1 1 1
—_— = = — —_— SN QS — (99)

a' a\ xq xn 2 x. 2
1+ — - A
al al®

4

Then the thickness is no longer computable froem ~ and
a

8§, Dbecause l% also exerts no effect upon it, There-

8

fore, the thickness is prescribed at a selected point 3%
: a
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D ¥
‘§6"that —— = 2 ——. The gtreamline..representing a sym—
a ' a ' ' '

metrical profile —curved profiles being discounted -
must therefore pass through the point with the coordi-

x) 1 D
nates —— and - —, and carry the i1dentification
N a'l 2 a!
——% = 0, Therewith equation (98) becomes
al v
x
1D d /X 1 D~ 1 - x 1 DN
LD 2o (m 2D 1 o m 1D
2 at a \a' 2 a'/ 2 \a' 2 at/
h Sx, 1 D
o Qg s = 2 (100)
a'! \\a' 2 a1/
D X3
Besides the thickness — at - the polnt of maximun
x a a
thickness —: and the edge angle & are given, The
a8’ .x; 1 D
values of Qy ( —_— = — } being obtainable from figures
Nat 2 at, a h
15, 16, and 20, the two constants —~ and —— themselves

a al
follow from equations (99) and (100). The result, for
cambered profiles, to which the known wvortex distridbu—
tions are applied, 1s the flow function

\l’ v y 4 /' x v 1 — s X }.\
x5 8,2 Q. ru_,jl\\+ -8 Q[ ——i— \
at v al al a \at at'/ 2 \a' at /
h ¥ T N
+ — Q, ji,ﬂl\\+ 2 tan B, | W, X0 Ws(l;O)J
al at at/ L al at/
Wy -7 V4 TN -
= — g twe{ E N o w150 |
s Li alal ]

+ 6 Wy | —— y/-—w (1; 0)]} (101)
[

Ya
where, according to equation (563), the ordinate —— of
al
the plane of the singularities is given by
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— tan p, - — — 1 - — (102)
a'a/
Since only linear termp are involved, tan B; and u,

no longer afford an accurate form of the median line of
the profile (the form of the mean line remains for dis-—
appearing thickness only) as is readily seen on the first
approximation in figure 21 (third profile). However,
the camber of this median line can be established by pre-—
b hY

seribing a point P (ji;jl > 0 ) as profile point and

a' a! /
computing tan B, for this point from equation (101);
whereas p, 1is deflined from the deslired O angle of at-—

./ N,
tack o = -&Pl - %}j . It is best to select the point
with the abscissa 3% = 0 and the ordinate QL = tan B

10, y, ¥ ® D, _ 2
+ = 2 =5, ——, where —= can be given according to
2 a! a'l a' a'

equation (100) or computed for a symmetrical profile by
means of equation (98); tan B is the desired profile
camber tan B S tan B,.

To illustrate: Take tan P, = 0.08, w, = 0.038
and & = 16° from the NACA 4418 airfoil section and
shift the position of the maximum thickness toward point

x . Do . X
—— = -0.2; while — = 0,32 remains for — = 0. Then,
al a! a al
according to (99) and {100), 5 = 0.096 and l% = 0,068,
a
FWext 1s computedthe value of the flow function _EJL_
al Vg

from (101) and (102) for 4aifferent abscissas 3% and
. a

several ordinates 3% = 0.0, 0.05, 0.1, 0.15, by post—
a .
‘x, F o /=, 3"
ing the values Q X, L and W —_— =
g v Qa" a'y v\\ac at/
the figures 15 to 20 or tables 1 to 7 and plotting the
flow function against

from
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1

Y wx
o for -
Uy

= O are the
x - . - ;

points of the streamline ——=— = 0 of the looked—for

a! Vy
profile. (The method of computing a2 profile from the
singularities corresponds to that by Fuhrmann (reference
6) and can be used for any arrangement of singularities.)
For the example in question the profile of figure 35 is
obtalned. The nose is scarcely changed by the distridbu-—

g N\
tion f4<:§7) : 1t remains the same as on the Karman-—
a

Trefftz profile, whence its curvature cirecle is given
with sufficient accuracy by equation (15) according to
reference (3). The foremost profile point is by

s N
i e--frc»m,point At/ X -~ 1.0', The profile presents
2 a' \ a' /
2 substantially different thickness curve from a normal
Kdrmdn~Trefftz profile and resembles those developed by
Piercy, Piper, and Preston (reference 9) by conformal

transformation.

According to previous considerations, equation (59)
can be retained for the flow along the y axis. The speeds

E— and -—— are lastly obtained by differentiation of

co fo o

(98), (101), and (59). The individual portions can be
read off from figures 24 to 28, ©Since, in thils instance,
the profile form has been defined from the singularity
distributions, the pressure distribution itself can de
computed for these profiles also. Admittedly, a close
approximation is obtained only for small «, since the
streamline Qy is usually not exactly fulfilled.

Translation by J, Vanier,
National Advisory Committee
for Aeronautics,
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Table 1. Flow function Q, (ai Ey—) of the source Table 5, Flow function W, (i,; i’—) of the vortex
a
distribution  f, (&/a’)of The Joukowski Profile, distribution f, {§/a’) of the S-shaped mean line.
¥ 7 .
x ?z"\ ] 0,05 0,1 90,15 0,2 0,3 =\ 7 0 0,05 01 0,15 0,2 0,3
a’ &
+ 0,75 |—0,191 |—0,210 |—0,221 |—0,231 |—0,242 | — 0,264 ¢ 0 0 0 0 0
-+ 0,50 | —0,450 | —0,449 | —0,448 | — 0,446 |—0,444 | — 0,417 4 0,25 | 70,127 | 70,118 | 0,108 | 0,098 | - 0,089 | 7 0,068
-+ 0,25 [—0,718 |[—0,698 | —0,672 | —0,652 | —0,640 | — 0,605 3 0,50 | 0,212 | 0,192 | F 0,174 [T 0,159 | F 0,145 | F 0,119
0 |—1,028|—0,970 |—0,914 | —0,868 | —0,834 | —0,764 I 0,75 | 70,238 | £ 0,216 | T 0,197 | F 0,179 | 70,164 | F 0,139
— 0,25 {—1,220 | —1,148 |—1,083 | —1,026 |—0,965 | — 0,860 1 1,00 | 70,165 | 3-0,164 | 0,157 | 70,148 | 70,142 | T 0,129
— 0,50 | —1,328 | —1,223 | —1,138 | —1,061 |—0,991 | — 0,853
— 075 |—1,162 | —1,050 |— 0,964 | —0,892 | —0,824 | — 0,729
—1,00] 0 [—0318—0,376—0,403|—0,414 | — 0,439
Table 6. Flow function Q, (—;i,; %) of the source
Table 2. Flow fuaction Qs (5; g;) of the source distribution  f, (§/a’) (Fiqure 33).
distribution }‘—5 (§/a’) of thecrescent x Flzl_’ 0 0,05 01 0,15 0,2 0,3
= a’ ]
] . . |
_x_,\g' 0 0,05 0.1 0.15 0.2 0% - 0 |—0,339|—0,316 |—0,208 |—0,277 | —0,259 | — 0,231
CEEERN + 0,25 |—0,309 |—0,291 | — 0,274 | —0,256 |—0,239 | — 0,213
_ |_ _ _ + 0,50 |—0,218 |—0,207 | —0,199 |—0,189 | —0,180 | — 0,164
0 | —0477)—0442|—0,420, —0,401 | —0385) — 0334~ o7s | 050" | o100 —otee —0,106 {—0,108 | — 0,109
£ 025 | — O | — s e | e | —oaae | —0ase 1.0 | 0,018 | —0.030 | —0,042 | —0,051 | — 0,060
¥ 0,50 | —0,352 | —0,324 | —0,304 ,—0,280 | —0,279 | — 0,253 =1 —0, 0 ,042 | —0, ;
¥ 0,75 |—0,195 | —0,195 [—0,190 {—0,185 | —0,177 | — 0,177
$1.00/ 0 |—0,036|—0,055 —0,069 |—0,080 | —0,098
Table 8. Flow function W, (5; ;J/) of +he vortex Table 7. Additive values o the flow functian
distribution f, (£/a) of the Flat plate. (= L) «(E: Z)
] | s | oa s NG l
3_\41’ o | 005 0,1 0,15 0,2 0,3 ¥ \ —0,9 | —105 | —1,10 | —0,95 | —1,05 | —1,20
a’ i a ’
0,80 |40,82 (4084 087 O |—0582| o —0,009| 0 0
050 | 1050 | 10,53 Tos0 | 7050 | {0620 | F0%s 0025 |38 |— o100 | —00a7 |00 | 0007 | —os0s
0,25 | 0,25 |4+0,280 |+0.319 |- 0,364 | +-0,407 | -} 0,483 0,050 |—0,531 |—0,170|—0,107 | —0.028 | —0,0145|—0,012
0 o |4005 |40,100[+0,149|+0,200|+030 0,10 [-—0,500 (—0,258 |—0,204 [~ 042 |—0,0233/—0,022
—025|—025 |—0,195|—0,134 | —0,064| 0 |4 0,127
— 0,50 | — 0,50 |{—0,419 | —0,338 | —0,250 | —0,160 | — 0,003 - -
— 0,75 | — 0,75 |—0,628 |—0,509 | —0,385 | —0,270 | — 0,065 a(%. I ) W, (i'; )
— 1,00 | —1,00 |—0,570 |—0,396 | —0,254 | —0,136 | - 0,062 _ @' e ~
., X -
iﬁ —0,95 | —1,05 | —1,10 | —0,05 | —1,05 | —1,10
z
_ 0 |—003| o0 —0,95 |—0,424 | — 0,184
. z. ¥ 0,025 |— 0,040 |—0,016 |—0,009 | —0,82 |—0,374 | — 0,170
Table 4. Flow function W“(a” a’) of the vortex 050 |— 0,054 |—0,026 | 0,019 | — 0,68 |—0,320 | — 0,154
distribution f; (£/a) of the curved plate. 0,10 |— 0,080 |—0,045 |—0,037 | — 0,47 |—0,241 | — 0,102
x z 0 0,05 0,1 0,15 0,2 0,3 x 7 = 7
/ X 8 s g ) ¥ x ¥
@ N\ Wi (i ) we(Z: 2
0 |—0,250|—0,203|—0,158 |—0,114 ——8312 ig’g;g —0,85 —-1,06 | 110 —0,95 =105 | —110
+ 0,25 | —0,220 |—0,175 (—0,126 | — 0,089 | —0, g 0,205 | 40290 | 40,334 | 40,195 | + 0,157 | + 0,139
+ 0,50 (—0,125 | —0,085 | —0,045 | —0,008 | 1-0,028 | +- 0,095 | /909 | | 0,200 | 40,330 | + 0,182 | 1 0,151 | 4- 0,138
+ 0,75 |1-0,033 | 0,064 | 0,092 | 4-0,120 | 0,147 +8,196 0,217 | 40,292 | +0,327 | 4+ 0,176 | - 0,148 | 4-0,135
£1,00 |+0,25 |-+0.255|4-0,265 |+0.275 |+0,288 | + 0,315 | g3 | 0301 | + 0,327 | + 0171 | 40142 | 0,131
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Figure 6.- Circle mapped on S-shaped mean line.
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Figure 20.- Flow function Qu(Z'g)of the additive source
distribution f4 (5).

Figure 29.- Gottinger airfoil section No. 624.

Pigs. 6,20,29.
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Figure 1l4.-Solution of the four profile
Figure 10,-Funcfions fg(-g) fa (g) and ;onatants of a generalized
f4 (§) for the superposed arman—Trif;f_ts profile.
vortex distribution density and G a7 | @ | 03
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Figure 16.-Flow function Qg (X;7)of
¢ source distribution f5
Figure 12.-Decomposition of y ordinate (§)of the crescent.

in plane of section.
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Figs.22,23,33,34,35.
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Figure 22.-Example
4, @approximation of
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sections.
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Figure 23.-Speed in vicinity of a

profile,

Yppersurface .-
d Profiles

Lower Surfoce
o1 d Profiles

<l ’J%%\

Figure 33.-Profile forms obtained

by the individual source
distributions in parallel flow along
x axis.
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Figure 35.-New profile forms
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singularity distributions.
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X
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given singularity distributions.
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Figure 27.~0rthogonal
system of speeds
induced by curved plate
vprtex distribution f3z
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Figure 28.-0Orthogonal
system of speeds
induced by vortex
distribution £, (5)of
5 the S-gshaped mean line.




Figure 30--2;3:3“ in field of Figure 31.-Speeds in field of Figure 32.-Speeds in field of
ottinger ai}x;foil Géttinger airfoil Gottinger airfoil

section No.624;section-5=-0,5 section No.624;section£=+0,5 gection No.624;section-%=-1,5

parallel to y axis.Ommission of perallel to y axis. parallel to y axis. &

profile thickness affords the
dashed curve,disregard of
quadrative term , the dash-
dot curve. ox/&
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